Example 1. Find the zero of the polynomial $p(x) = 3x + 1$
Solution
$p(x) = 3x + 1$
A zero of a polynomial is a number which makes $p(x) = 0$
Now $p(x) = 0$ ⇒ $3x + 1 = 0$ ⇒ $3x = -1$ ⇒ $x = \frac{-1}{3}$
∴ The zero of the given polynomial $p(x)$ is $\frac{-1}{3}$
Example 2. Find the remainder when $3x^4 - 6x^2 - 8x + 2$ is divided by $x - 2$
Solution
Let $p(x) = 3x^4 - 6 x^2 -8x + 2$
$x - 2$ ⇒ $x = 2$
By the
Remainder Theorem, we know that when a polynomial is divided by $x - 2$, the remainder is $p(2)$
$\begin{align*}
& ∴ p(2) = 3*2^4 - 6*2^2 - 8*2 + 2 \\
& = 3 * 16 - 6 * 4 - 16 + 2 \\
& = 48 - 24 - 16 + 2 \\
& = 10
\end{align*}
$
Example 3. The polynomials $(ax^3 + 3x^2 - 3)$ and $(2x^3 - 5x + a)$ when divided by
$x - 4$ leave the same remainder. Find the value of $a$.
Solution
Let $p(x) = ax^3 + 3x^2 - 3$ and $q(x) = 2x^3 - 5x + a$
$x - 4$ ⇒ $x = 4$
By the
Remainder Theorem, we know that when a polynomial is divided by $x - 4$, the remainder is $p(4)$
$\begin{align*}
& ∴ p(4) = a*4^3 + 3*4^2 - 3 \\
& = a * 64 + 3 * 16 - 3 \\
& = 64a + 45
\end{align*}
$
$\begin{align*}
& ∴ q(4) = 2*4^3 - 5*4 + a \\
& = 2 * 64 - 20 + a \\
& = 108 + a
\end{align*}
$
As the remainder in both the above cases is the same
$ 64a + 45 = 108 + a$
⇒ $63a = 63$
⇒ $a = 1$
Example 4. Factorize $8a^3 + b^3 + 12a^2b + 6ab^2$
Solution
To factorize this expression, we will use the
Polynomial Identity :
$(x + y)^3 = x^3 + y^3 + 3xy(x + y)$
The given expression can be written as
$\begin{align*}
& 8a^3 + b^3 + 12a^2b + 6ab^2 \\
& = (2a)^3 + (b)^3 + 6ab(2a) + 6ab(b) \\
& = (2a)^3 + (b)^3 + 6ab(2a + b) \\
& = (2a + b)^3
\end{align*}
$
Example 5. Factorize $64a^3 - 27b^3 - 144a^2b + 108ab^2$
Solution
To factorize this expression, we will use the
Polynomial Identity :
$(x - y)^3 = x^3 - y^3 - 3xy(x - y)$
The given expression can be written as
$\begin{align*}
& 64a^3 - 27b^3 - 144a^2b + 108ab^2 \\
& = (4a)^3 - (3b)^3 - 12ab(12a) + 12ab(9b) \\
& = (4a)^3 + (3b)^3 - 12ab(12a - 9b) \\
& = (4a - 3b)^3
\end{align*}
$
Example 6. Factorize $x^4 - 625$
Solution
To factorize this expression, we will use the
Polynomial Identity :
$(x^2 - y^2) = (x + y)(x - y)$
The given expression can be written as
$\begin{align*}
& x^4 - 625 \\
& = (x^2 - 25)(x^2 + 25) \\
& = (x - 5)(x + 5)(x^2 + 25)
\end{align*}
$
Example 7. Give possible expressions for the length and breadth of the following rectangle,
in which its area is given:
Solution
Area of a rectangle is the product of its length and breadth.
Hence to find possible expressions of the length and the breadth, we need to find factors
of this expression.
Comparing the given expression, we observe that, if we put $5a$ as $x$, the given expression can be re-written as
$x^2 - 7x + 12$
To factorize this expression, we will use the
Polynomial Identity :
$(x + a)(x + b) = x^2 + (a + b)x + ab$
Thus $-7$ can be split as $-4$ and $-3$
$\begin{align*}
& x^2 - 7x + 12 \\
& = x^2 - 4x -3x + 12 \\
& = x(x - 4) -3(x - 4) \\
& = (x - 4)(x - 3)
\end{align*}
$
Replace $x$ by $5a$ to get back the factors as $(5a - 4)$ and $(5a - 3)$
Therefore, possible expressions for length and breadth are $(5a - 4)$ and $(5a - 3)$
Example 8. Expand $(3x + 2)^3$
Solution
To expand this expression, we will use the
Polynomial Identity :
$(x + y)^3 = x^3 + y^3 + 3xy(x + y)$
$\begin{align*}
& (3x + 2)^3 \\
& = 27x^3 + 8 + 3*3x*2(3x + 2) \\
& = 27x^3 + 8 + 18x(3x + 2) \\
& = 27x^3 + 8 + 54x^2 + 36x
\end{align*}
$
Example 9. Factorize $(a + b)^3 - 8$
Solution
To expand this expression, we will use the
Polynomial Identity :
$(x^3 - y^3) = (x - y)(x^2 + xy + y^2)$
$\begin{align*}
& (a + b)^3 - 8 \\
& = (a + b - 2)((a + b)^2 + (a + b)*2 + 2^2) \\
& = (a + b - 2)((a + b)^2 + 2(a + b) + 4)
\end{align*}
$
Example 10. Factorize $(a + b)^3 - (a - b)^3$
Solution
To expand this expression, we will use the
Polynomial Identity :
$(x^3 - y^3) = (x - y)(x^2 + xy + y^2)$
$\begin{align*}
& (a + b)^3 - (a - b)^3 \\
& = ((a + b) - (a - b))((a + b)^2 + (a + b)*(a - b) + (a - b)^2) \\
& = (a + b - a + b)(a^2 + 2ab + b^2 + a^2 - b^2 + a^2 - 2ab + b^2) \\
& = (2b)(a^2 + a^2 + a^2 + b^2) \\
& = (2b)(3a^2 + b^2) \\
\end{align*}
$
Example 11. Factorize $a^3 - \frac{1}{a^3} - 2a + \frac{2}{a}$
Solution
To expand this expression, we will use the following
Polynomial Identity :
$(x^3 - y^3) = (x - y)(x^2 + xy + y^2)$
$\begin{align*}
& a^3 - \frac{1}{a^3} - 2a + \frac{2}{a} \\
& = \left(a - \frac{1}{a}\right)\left(a^2 + a*\frac{1}{a} + \frac{1}{a^2}\right) - 2a + \frac{2}{a} \\
& = \left(a - \frac{1}{a}\right)\left(a^2 + 1 + \frac{1}{a^2}\right) - 2\left(a - \frac{1}{a}\right) \\
& = \left(a - \frac{1}{a}\right)\left(a^2 + 1 + \frac{1}{a^2} - 2\right) \\
& = \left(a - \frac{1}{a}\right)\left(a^2 - 1 + \frac{1}{a^2}\right) \\
\end{align*}
$
Example 12. Factorize $a^3 + 3a^2b + 3ab^2 + b^3 - 8$
Solution
To expand this expression, we will use the following two
Polynomial Identities :
$(x + y)^3 = x^3 + y^3 + 3xy(x + y)$ and
$(x^3 - y^3) = (x - y)(x^2 + xy + y^2)$
$\begin{align*}
& a^3 + 3a^2b + 3ab^2 + b^3 - 8 \\
& = a^3 + b^3 + 3ab(a + b) - 8 \\
& = (a + b)^3 - 2^3 \\
& = (a + b - 2)((a + b)^2 + (a + b)*2 + 2^2) \\
& = (a + b - 2)((a + b)^2 + 2(a + b) + 4)
\end{align*}
$