Happy people

Trigonometry - Solved Examples

Exercise 8.2

Trigonometry Concepts

NCERT Exercise 8.1



1
In △ ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine:

(i) sin A, cos A
(ii) sin C, cos C


Solution

Using Pythagoras theorem, AC = $\sqrt{AB^2 + BC^2}$ = $\sqrt{24^2 + 7^2}$ = $25$

sin A = $\dfrac{opposite}{hypotenuse}$ = $\dfrac{BC}{AC}$ = $\dfrac{7}{25}$

cos A = $\dfrac{adjacent}{hypotenuse}$ = $\dfrac{AB}{AC}$ = $\dfrac{24}{25}$

sin C = $\dfrac{opposite}{hypotenuse}$ = $\dfrac{AB}{AC}$ = $\dfrac{24}{25}$

cos C = $\dfrac{adjacent}{hypotenuse}$ = $\dfrac{BC}{AC}$ = $\dfrac{7}{25}$




2
In Fig. 8.13, find tan P - cot R.


Solution

Using Pythagoras theorem, QR = $\sqrt{13^2 - 12^2}$ = $25$ = $5$

tan P - cot R = $\dfrac{QR}{PR}$ - $\dfrac{QR}{PQ}$ = $\dfrac{5}{12}$ = $\dfrac{5}{12}$ = $0$

Trigonometric identities example



3
if sin A = $\dfrac{3}{4}$, calculate cos A and tan A.


Solution

sin A = $\dfrac{3}{4}$
As sin A = $\dfrac{\text{opposite side}}{\text{hypotenuse}}$ ⇒ opposite side = 3 and hypotenuse = 4
Using Pythagoras theorem, adjacent side = $\sqrt{4^2 - 3^2}$ = $\sqrt{7}$

cos A = $\dfrac{\text{adjacent side}}{\text{hypotenuse}}$ = $\dfrac{\sqrt{7}}{4}$
tan A = $\dfrac{\text{oppsite side}}{\text{adjacent side}}$ = $\dfrac{3}{\sqrt{7}}$




4
Given 15 cot A = 8, find sin A and sec A.


Solution

15 cot A = 8 ⇒ cot A = $\dfrac{8}{15}$

cot A = $\dfrac{\text{adjacent side}}{\text{opposite side}}$
⇒ adjacent side = 8 and opposite side = 15
Using Pythagoras theorem, hypotenuse = $\sqrt{8^2 + 15^2}$ = $17$

sin A = $\dfrac{\text{oppsite side}}{\text{hypotenuse}}$ = $\dfrac{15}{17}$
sec A = $\dfrac{\text{hypotenuse}}{\text{adjacent side}}$ = $\dfrac{17}{8}$




5
Given sec θ = $\dfrac{13}{12}$, calculate all other trigonometric ratios.


Solution

sec A = $\dfrac{\text{hypotenuse}}{\text{adjacent side}}$ ⇒ hypotenuse = 13 and adjacent side = 12
Using Pythagoras theorem, opposite side = $\sqrt{13^2 - 12^2}$ = $5$

sin A = $\dfrac{\text{oppsite side}}{\text{hypotenuse}}$ = $\dfrac{5}{13}$
cos A = $\dfrac{\text{adjacent side}}{\text{hypotenuse}}$ = $\dfrac{12}{13}$
tan A = $\dfrac{\text{opposite side}}{\text{adjacent side}}$ = $\dfrac{5}{12}$
cosec A = $\dfrac{\text{hypotenuse}}{\text{oppsite side}}$ = $\dfrac{13}{5}$
sec A = $\dfrac{\text{hypotenuse}}{\text{adjacent side}}$ = $\dfrac{13}{12}$
cot A = $\dfrac{\text{adjacent side}}{\text{opposite side}}$ = $\dfrac{12}{5}$




6
If ∠ A and ∠ B are acute angles such that cos A = cos B, then show that ∠ A and ∠ B.


Solution

cos A = $\dfrac{\text{adjacent side}}{\text{hypotenuse}}$ = $\dfrac{AC}{AB}$
cos B = $\dfrac{\text{adjacent side}}{\text{hypotenuse}}$ = $\dfrac{BC}{AB}$
cos A = cos B ⇒ $\dfrac{AC}{AB}$ = $\dfrac{BC}{AB}$ ⇒ AC = BC
In a triangle, angles opposite to equal sides are equal ⇒ ∠ A and ∠ B




7
If cot θ = $\dfrac{7}{8}$, evaluate:

(i) $\dfrac{(1 + sin θ)(1 - sin θ)}{(1 + cos θ)(1 - cos θ)}$
(ii) $cot^2θ$


Solution

cot θ = $\dfrac{\text{adjacent side}}{\text{opposite side}}$ = $\dfrac{7}{8}$
⇒ adjacent side = 7 and opposite side = 8
Hypotenuse = $\sqrt{7^2 + 8^2}$ = $\sqrt{113}$

(i) sin θ = $\dfrac{\text{oppsite side}}{\text{hypotenuse}}$ = $\dfrac{8}{\sqrt{113}}$

sin θ = $\dfrac{\text{adjacent side}}{\text{hypotenuse}}$ = $\dfrac{7}{\sqrt{113}}$

$\dfrac{(1 + sin θ)(1 - sin θ)}{(1 + cos θ)(1 - cos θ)}$
= $\dfrac{\left(1 + \dfrac{8}{\sqrt{113}}\right)\left(1 - \dfrac{8}{\sqrt{113}}\right)}{\left(1 + \dfrac{7}{\sqrt{113}}\right)\left(1 - \dfrac{7}{\sqrt{113}}\right)}$ = $\dfrac{\left(1 - \dfrac{64}{113}\right)}{\left(1 - \dfrac{49}{113}\right)}$ = $\dfrac{49}{64}$

(ii) $cot^2θ$ = $\dfrac{7}{8}$ × $\dfrac{7}{8}$ = $\dfrac{49}{64}$




8
If 3 cot A = 4, check whether $\dfrac{1- tan^2 A}{1 + tan^2 A}$ = $cos^2 A - sin^2 A$ or not.


Solution

3 cot A = 4 ⇒ cot A = $\dfrac{4}{3}$ ⇒ tan A = $\dfrac{3}{4}$

Opposite side = 3 and Adjacent side = 4 ⇒ Hypotenuse = $\sqrt{3^2 + 4^2}$ = 5

∴ sin A = $\dfrac{3}{5}$ and cos A = $\dfrac{4}{5}$

$\dfrac{1- tan^2 A}{1 + tan^2 A}$ = $\dfrac{1 - \left(\dfrac{3}{4}\right)^2}{1 + \left(\dfrac{3}{4}\right)^2}$ = $\dfrac{\dfrac{7}{16}}{\dfrac{25}{16}}$ = $\dfrac{7}{25}$

$cos^2 A - sin^2 A$ = $\left(\dfrac{4}{5}\right)^2 - \left(\dfrac{3}{5}\right)^2$ = $\dfrac{7}{25}$

Hence $\dfrac{1- tan^2 A}{1 + tan^2 A}$ = $cos^2 A - sin^2 A$




9
In triangle ABC, right-angled at B, if tan A = $\dfrac{1}{\sqrt{3}}$, find the value of:

(i) sin A cos C + cos A sin C
(ii) cos A cos C - sin A sin C


Solution

tan A = $\dfrac{1}{\sqrt{3}}$ ⇒ $\dfrac{\text{side opposite to A}}{\text{side adjacent to A}}$ = $\dfrac{1}{\sqrt{3}}$
∴ $\frac{\text{BC}}{\text{AB}} = \dfrac{1}{\sqrt{3}}$ ⇒ BC × $\sqrt{3} = AB$
AC = $\sqrt{AB^2 + BC^2}$ = $\sqrt{3BC^2 + BC^2}$ = $\sqrt{4BC^2}$ = 2BC
sin A = = $\dfrac{\text{oppsite side}}{\text{hypotenuse}}$ = $\dfrac{BC}{AC}$ = $\dfrac{BC}{2BC}$ = $\dfrac{1}{2}$

cos A = = $\dfrac{\text{adjacent side}}{\text{hypotenuse}}$ = $\dfrac{AB}{AC}$ = $\dfrac{\sqrt{3}BC}{2BC}$ = $\dfrac{\sqrt{3}}{2}$

sin C = = $\dfrac{\text{oppsite side}}{\text{hypotenuse}}$ = $\dfrac{AB}{AC}$ = $\dfrac{\sqrt{3}BC}{2BC}$ = $\dfrac{\sqrt{3}}{2}$

cos C = = $\dfrac{\text{adjacent side}}{\text{hypotenuse}}$ = $\dfrac{BC}{AC}$ = $\dfrac{BC}{2BC}$ = $\dfrac{1}{2}$

(i) sin A cos C + cos A sin C
= $\dfrac{1}{2} × \dfrac{1}{2}$ + $\dfrac{\sqrt{3}}{2} × \dfrac{\sqrt{3}}{2}$ = $\dfrac{1}{4} + \dfrac{3}{4}$ = 1

(ii) cos A cos C - sin A sin C
= $\dfrac{\sqrt{3}}{2} × \dfrac{1}{2}$ - $\dfrac{{1}}{2} × \dfrac{\sqrt{3}}{2}$ = $\dfrac{\sqrt{3}}{4} × \dfrac{\sqrt{3}}{4}$ = 0




10
In triangle PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

Solution

Using Pythagoras theorem, $PQ^2 + QR^2 = PR^2$

∴ Replacing PR by 25 - QR
$5^2 + QR^2 = (25 - QR)^2$
⇒ $25 + QR^2 = 625 + 2 × 25 × QR + QR^2$
⇒ $25 + QR^2 = 625 + 50QR + QR^2$
⇒ $600 = 50 QR$ ⇒ QR = 12

∴ PR = 25 - QR = 25 - 12 = 13

sin P = = $\dfrac{\text{oppsite side}}{\text{hypotenuse}}$ = $\dfrac{QR}{PR}$ = $\dfrac{12}{13}$

cos P = = $\dfrac{\text{adjacent side}}{\text{hypotenuse}}$ = $\dfrac{PQ}{PR}$ = $\dfrac{5}{13}$

tan P = = $\dfrac{\text{opposite side}}{\text{adjacent side}}$ = $\dfrac{QR}{PQ}$ = $\dfrac{12}{5}$

Trigonometric identities example



11
State whether the following are true or false. Justify your answer.
(i) The value of tan A is always less than 1.
(ii) sec A = $\dfrac{12}{5}$ for some value of angle A.
(iii) cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A.
(v) sin θ = $\dfrac{4}{3}$ for some angle θ


Solution

The value of tan A is always less than 1. (i)False. The value of tan begins from zero and goes on to become more than 1.

(ii) True. The value of sec is always more than 1.

(iii) False. cos is the abbreviation of cosine.

(iv) False. cot A means cotangent of angle A.

(v) False. The value of sin is always less than or equal to 1, but this value is more than 1.