Solution
The correct answer is 0
Explanation
Given equation of circle is:
$x^2+y^2=a^2$
⇒ $y^2=a^2-x^2$
⇒ $y=\sqrt{a^2-x^2}$
Area of circle = 4×Area of first quadrant
=$4 \int_{0}^{a} y$ $dx$
=$4 \int_{0}^{a} \sqrt{a^2-x^2}$ $dx$
=4 $\left[ \dfrac{x}{2} \sqrt{a^2-x^2} + \dfrac{a^2}{2} sin^{-1} \dfrac{x}{a}\right]_{0}^{a}$
=4 $\left[ 0 + \dfrac{a^2}{2} sin^{-1} \dfrac{a}{a} - 0 - \dfrac{a^2}{2} sin^{-1} \dfrac{0}{a}\right]$
=4 $\left[ \dfrac{a^2}{2} sin^{-1} 1 - \dfrac{a^2}{2} sin^{-1} 0\right]$
=4 $\left[ \dfrac{a^2}{2} \dfrac{\pi}{2} \right]$
= $\pi a^2$ sq. units