KARNATAKA-2nd-PUC-2023-Mathematics-Sample-Paper
KARNATAKA 2nd PUC 2023 Mathematics Sample Paper
Question 37
Express $\left[ \begin{matrix}
3 & \phantom{-}5 \\
1 & -1 \\
\end{matrix} \right]$ as the sum of a symmetric and skew symmetric matrices.
Solution
Using the formula
A = $\dfrac{1}{2} [A + A']$ + $\dfrac{1}{2} [A - A']$
We have
A = $\left[ \begin{matrix}
3 & \phantom{-}5 \\
1 & -1 \\
\end{matrix} \right]$ and A' = $\left[ \begin{matrix}
3 & \phantom{-}1 \\
5 & -1 \\
\end{matrix} \right]$
Symmetric Matrix
$\dfrac{1}{2} [A + A']$ =
$\dfrac{1}{2}$
$\left[ \begin{matrix}
3 & \phantom{-}5 \\
1 & -1 \\
\end{matrix} \right]$ +
$\left[ \begin{matrix}
3 & \phantom{-}1 \\
5 & -1 \\
\end{matrix} \right]$ = $\dfrac{1}{2}$ $\left[ \begin{matrix}
6 & \phantom{-}6 \\
6 & -2 \\
\end{matrix} \right]$ = $\left[ \begin{matrix}
3 & \phantom{-}3 \\
3 & -1 \\
\end{matrix} \right]$
Skew symmetric Matrix
$\dfrac{1}{2} [A - A']$ =
$\dfrac{1}{2}$
$\left[ \begin{matrix}
3 & \phantom{-}5 \\
1 & -1 \\
\end{matrix} \right]$ -
$\left[ \begin{matrix}
3 & \phantom{-}1 \\
5 & -1 \\
\end{matrix} \right]$ = $\dfrac{1}{2}$ $\left[ \begin{matrix}
0 & \phantom{-}4 \\
-4 & \phantom{-}0 \\
\end{matrix} \right]$ = $\left[ \begin{matrix}
0 & \phantom{-}2 \\
-2 & \phantom{-}0 \\
\end{matrix} \right]$
A = sum of symmetric matrix and skew symmetric matrix
$\left[ \begin{matrix}
3 & \phantom{-}3 \\
3 & -1 \\
\end{matrix} \right]$ + $\left[ \begin{matrix}
0 & \phantom{-}2 \\
-2 & \phantom{-}0 \\
\end{matrix} \right]$ = $\left[ \begin{matrix}
3 & \phantom{-}5 \\
1 & -1 \\
\end{matrix} \right]$
a8ce7da3-8aac-11ed-94f3-5405dbb1cb03