Default
Question
Find the area bounded by the curve $y = cosx$ between $x=0$ and $x=2\pi$
Solution
The correct answer is 4
Explanation
Area = $\int_{0}^{\pi/2} cos x$ $dx$ + $\int_{\pi/2}^{3\pi/2} cos x$ $dx$ + $\int_{3\pi/2}^{2\pi} cos x$ $dx$
= $\left[sin x \right]_{0}^{\pi/2}$ + $\left[sin x \right]_{\pi/2}^{3\pi/2}$ + $\left[sin x \right]_{3\pi/2}^{2\pi}$
= 1 + 2 + 1 = 4
3e6daf0f-7631-11ed-94f3-5405dbb1cb03