KARNATAKA-2nd-PUC-2023-Mathematics-Sample-Paper
KARNATAKA 2nd PUC 2023 Mathematics Sample Paper
Question 31
Find the area of a triangle having the points A(1,1,1), B(1,2,3) and C(2,3,1) as its vertices.
Solution
The correct answer is $\dfrac{\sqrt{21}}{2}$
Explanation
Given vertices of the triangle are A(1,1,1), B(1,2,3) and C(2,3,1)
∴ $\overrightarrow{AB}$ = $0 \hat{i} + \hat{j} + 2\hat{k}$ and $\overrightarrow{AC}$ = $ \hat{i} + 2\hat{j} + 0\hat{k}$
$\overrightarrow{AB}$ $\times$ $\overrightarrow{AC}$ =
$\left| \begin{matrix}
\hat{i} & \phantom{-}\hat{j} & \phantom{-}\hat{k} \\
0 & \phantom{-}1 & \phantom{-}2\\
1 & \phantom{-}2 & \phantom{-}0\\
\end{matrix} \right|$ = $\hat{i}(0-4) -\hat{j}(0-2) +\hat{k}(0-1)$ = $-4\hat{i} + 2\hat{j} -\hat{k}$
$|\overrightarrow{AB}$ $\times$ $\overrightarrow{AC}|$ = $\sqrt{(-4)^2 +(2)^2 +1^2 }$ = $\sqrt{16 + 4 +1 }$ = $\sqrt{21}$
Area of $\triangle$ = $\dfrac{1}{2}$ $|\overrightarrow{AB}$ $\times$ $\overrightarrow{AC}|$ =
$\dfrac{1}{2} \sqrt{21}$ = $\dfrac{\sqrt{21}}{2}$
a8ef71b8-89ac-11ed-94f3-5405dbb1cb03