Default
Question
Find the area of the ellipse $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$ by integration.
Solution
The correct answer is $\pi ab$
Explanation
Given equation of ellipse is:
$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$
⇒ $\dfrac{y^2}{b^2}=1 - \dfrac{x^2}{a^2}$
⇒ $\dfrac{y^2}{b^2}=\dfrac{a^2 - x^2}{a^2}$
⇒ $y^2=\dfrac{b^2}{a^2}(a^2 - x^2)$
⇒ $y= \pm \dfrac{b}{a} \sqrt{(a^2 - x^2)}$
As AOB is in 1st quadrant, value if $y$ is positive.
∴ $y= \dfrac{b}{a} \sqrt{(a^2 - x^2)}$
Area of ellipse = 4Ă—Area of first quadrant
=$4 \int_{0}^{a} y$ $dx$
=$4 \int_{0}^{a} \dfrac{b}{a} \sqrt{a^2-x^2}$ $dx$
=$4 \dfrac{b}{a} \int_{0}^{a} \sqrt{a^2-x^2}$ $dx$
=4 $\dfrac{b}{a} \left[ \dfrac{x}{2} \sqrt{a^2-x^2} + \dfrac{a^2}{2} sin^{-1} \dfrac{x}{a}\right]_{0}^{a}$
=4 $\dfrac{b}{a} \left[ 0 + \dfrac{a^2}{2} sin^{-1} \dfrac{a}{a} - 0 - \dfrac{a^2}{2} sin^{-1} \dfrac{0}{a}\right]$
=4 $\dfrac{b}{a} \left[ \dfrac{a^2}{2} sin^{-1} 1 - \dfrac{a^2}{2} sin^{-1} 0\right]$
=4 $\dfrac{b}{a} \left[ \dfrac{a^2}{2} \dfrac{\pi}{2} \right]$
= $\pi ab$ sq. units
0ae5310a-7898-11ed-94f3-5405dbb1cb03