Default
Question
Find the area of the ellipse x2a2+y2b2=1 by integration.
Solution
The correct answer is πab
Explanation
Given equation of ellipse is:
x2a2+y2b2=1
⇒ y2b2=1−x2a2
⇒ y2b2=a2−x2a2
⇒ y2=b2a2(a2−x2)
⇒ y=±ba√(a2−x2)
As AOB is in 1st quadrant, value if y is positive.
∴ y=ba√(a2−x2)
Area of ellipse = 4×Area of first quadrant
=4∫a0y dx
=4∫a0ba√a2−x2 dx
=4ba∫a0√a2−x2 dx
=4 ba[x2√a2−x2+a22sin−1xa]a0
=4 ba[0+a22sin−1aa−0−a22sin−10a]
=4 ba[a22sin−11−a22sin−10]
=4 ba[a22π2]
= πab sq. units
0ae5310a-7898-11ed-94f3-5405dbb1cb03