KARNATAKA-2nd-PUC-2023-Mathematics-Sample-Paper
KARNATAKA 2nd PUC 2023 Mathematics Sample Paper
Question 43
Find the area of the region bounded by the curve $y^2 = x$ and the lines $x=1$, $x=4$ and the x-axis in the first quadrant.
Solution
The correct answer is $\dfrac{14}{3}$
Explanation
Required Area ABCD = $\int_a^b y$ $dx$
= $\int_1^4 \sqrt{x}$ $dx$
= $\int_1^4 x^{\frac{1}{2}}$ $dx$
= $\left[ \dfrac{x^{\frac{1}{2}+ 1}}{\frac{1}{2}+ 1} \right]_1^4$
= $\left[ \dfrac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_1^4$
= $\dfrac{2}{3} \left[ 4^{\frac{3}{2}} - 1^{\frac{3}{2}} \right]$
= $\dfrac{2}{3} \left[ 8 - 1 \right]$
= $\dfrac{14}{3}$
61eab448-8c10-11ed-94f3-5405dbb1cb03