Default
Question
Find the derivative of $\dfrac{2x + 1}{3x - 4}$
Solution
The correct answer is $\dfrac{- 11}{(3x - 4)^2}$
Explanation
As per Quotient Rule,
$\dfrac{dy}{dx}$ = $\dfrac{v \dfrac{du}{dx} - u \dfrac{dv}{dx}}{v^2}$
$ ∴ \dfrac{dy}{dx}$ = $\dfrac{(3x - 4) D(2x + 1) - (2x + 1) D(3x - 4)}{(3x - 4)^2}$
= $\dfrac{(3x - 4) (2) - (2x + 1)(3)}{(3x - 4)^2}$
= $ \dfrac{6x - 8 - 6x -3}{(3x - 4)^2}$
= $\dfrac{- 11}{(3x - 4)^2}$
f02581fa-2cbf-11ed-aec7-5405dbb1cb03