KARNATAKA-2nd-PUC-2023-Mathematics-Sample-Paper
KARNATAKA 2nd PUC 2023 Mathematics Sample Paper
Question 27
Find the local maximum value of the function $g(x) = x^3 - 3x$
Solution
The correct answer is 2
Explanation
Given $g(x) = x^3 - 3x$
$g'(x) = 3x^2 - 3$
$g''(x) = 6x$
To obtain critical point, put $g'(x) = 0$
∴ $g'(x) = 3x^2 - 3 = 0$
∴ $x = \pm 1$
At $x = -1$, $g''(x) = 6x = 6(-1) = -6 < 0$
Hence there is a local maxima at $x = -1$
Value of the function at local maxima = $g(x) = x^3 - 3x$ - $(-1)^3 - 3(-1)$ = $2$
105f4f4b-8900-11ed-94f3-5405dbb1cb03