Default
Question
Find the slope of the tangent to the curve $y = \dfrac{x-1}{x-2}$, $x \ne 2$ and $x=10$
Solution
The correct answer is $\dfrac{-1}{64}$
Explanation
Given $y = \dfrac{x-1}{x-2}$
∴ $\dfrac{dy}{dx} = \dfrac{(x-2)(1) - (x-1)(1)}{(x-2)^2}$ = $\dfrac{-1}{(x-2)^2}$
∴ slope = $\left( \dfrac{dy}{dx} \right)_{x=10} $ = $\dfrac{-1}{(10-2)^2}$ = $\dfrac{-1}{64}$
486db84e-83ad-11ed-94f3-5405dbb1cb03