Default
Question
Find the unit vector in the direction of the vector $\overrightarrow{PQ}$ where $P (1,2,3)$ and $Q(4,5,6) $.
Solution
The correct answer is $\dfrac{1}{\sqrt{3}} (\hat{i} + \hat{j} + \hat{k})$
Explanation
Given $\overrightarrow{OP}$ = $\hat{i} + 2\hat{j} + 3\hat{k}$ and $\overrightarrow{OQ}$ = $4\hat{i} + 5\hat{j} + 6\hat{k}$
∴ $\overrightarrow{PQ}$ = $\overrightarrow{OQ}$ - $\overrightarrow{OP}$ = $3\hat{i} + 3\hat{j} + 3\hat{k}$
The unit vector in the direction of the vector $\overrightarrow{PQ}$
$\overrightarrow{PQ}$ = $\dfrac{\overrightarrow{PQ}}{|\overrightarrow{PQ}|}$ =
$\dfrac{3\hat{i} + 3\hat{j} + 3\hat{k}}{\sqrt{9 + 9 + 9}}$ =
$\dfrac{1}{3\sqrt{3}} (3\hat{i} + 3\hat{j} + 3\hat{k})$
$\dfrac{1}{\sqrt{3}} (\hat{i} + \hat{j} + \hat{k})$
ba99ec14-75df-11ed-94f3-5405dbb1cb03