Default
Question
Find the unit vector in the direction of the vector →a + →b, where →a = 2ˆi−ˆj+2ˆk and →b = −ˆi+ˆj−ˆk.
Solution
The correct answer is 1√2(ˆi+ˆk)
Explanation
Given →a = 2ˆi−ˆj+2ˆk and →b = −ˆi+ˆj−ˆk
∴ →a + →b = ˆi+ˆk
The unit vector in the direction of the vector →a + →b
→n = →a+→b|→a+→b| = ˆi+ˆk√1+1 =
1√2(ˆi+ˆk)
ec7d3111-75e1-11ed-94f3-5405dbb1cb03