KCET-2014-Mathematics-Paper
KCET 2014 Mathematics Paper
Question 7
Given $0 \le x \le \dfrac{1}{2}$, then the value of
$tan\left [ sin^{-1}\left\{\dfrac{x}{\sqrt{2}} + \dfrac{\sqrt{1-x^2}}{\sqrt{2}} \right \} - sin^{-1}x \right ]$
Solution
The correct answer is 1
Explanation
$tan\left [ sin^{-1}\left\{\dfrac{x}{\sqrt{2}} + \dfrac{\sqrt{1-x^2}}{\sqrt{2}} \right \} - sin^{-1}x \right ]$
= $tan\left [ sin^{-1}\left\{\dfrac{x +\sqrt{1-x^2}}{\sqrt{2}} \right \} - sin^{-1}x \right ]$
Let $sin^{-1}x = \theta$ ⇒ $x = sin\theta$
⇒ $tan\left [ sin^{-1}\left\{\dfrac{sin\theta +\sqrt{1-sin^2\theta}}{\sqrt{2}} \right \} - \theta \right ]$
⇒ $tan\left [ sin^{-1}\left\{\dfrac{sin\theta +cos\theta}{\sqrt{2}} \right \} - \theta \right ]$
⇒ $tan\left [ sin^{-1}\left\{sin(\theta + \dfrac{\pi}{4}) \right \} - \theta \right ]$
⇒ $tan\left [ \theta + \dfrac{\pi}{4} - \theta \right ]$
⇒ $tan\left [ \dfrac{\pi}{4} \right ]$
⇒ 1
68a2c4f3-dadc-11ed-873a-5405dbb1cb03