KARNATAKA-2nd-PUC-2023-Mathematics-Sample-Paper
KARNATAKA 2nd PUC 2023 Mathematics Sample Paper
Question 38
If $y = cos^{-1} \left( \dfrac{1-x^2}{1+x^2} \right)$, 0 < $x$ < 1, then find $\dfrac{dy}{dx}$
Solution
The correct answer is $\dfrac{dy}{dx}$ = $\dfrac{2}{1+x^2}$
Explanation
$y = cos^{-1} \left( \dfrac{1-x^2}{1+x^2} \right)$
Let $x = tan \theta$
∴ $y = cos^{-1} \left( \dfrac{1-tan^2 \theta}{1+tan^2 \theta} \right)$
⇒ $y = cos^{-1} \left( cos2 \theta \right)$ = $2 \theta$
Replacing $\theta$ by $tan^{-1}x$
$y = 2tan^{-1}x$
Differentiating w.r.t. $x$
$\dfrac{dy}{dx}$ = $\dfrac{2}{1+x^2}$
c82a20fa-8ab7-11ed-94f3-5405dbb1cb03