KARNATAKA-2nd-PUC-2023-Mathematics-Sample-Paper
KARNATAKA 2nd PUC 2023 Mathematics Sample Paper
Question 26
If $y = x^{sin x}$, $x > 0$, find $\dfrac{dy}{dx}$
Solution
The correct answer is $x^{sin x}$ $\left[ \dfrac{sinx}{x} + logx cosx \right] $
Explanation
$y = x^{sin x}$
Taking log on both sides,
$log$ $y$ = $log$ $ x^{sin x}$
As $log$ $p^{n} = n$ $log p$, the above can be written as
$log$ $y$ = $sinx$ $log x$
Differentiating both sides with respect to $x$ and using the product rule,
$\dfrac{1}{y}$ $\dfrac{dy}{dx}$ = $\dfrac{sinx}{x}$ + $logx$ $cosx$
$\dfrac{dy}{dx}$ = $y$ $\left[ \dfrac{sinx}{x} + logx cosx \right] $
$\dfrac{dy}{dx}$ = $x^{sin x}$ $\left[ \dfrac{sinx}{x} + logx cosx \right] $
908a38b2-88f1-11ed-94f3-5405dbb1cb03