Let $f: N \rightarrow R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \rightarrow S$, where $S$ is the range of function $f$, is invertible. Find the inverse of $f$.
Karnataka PU MQP 2023
Solution
The correct answer is $\dfrac{\sqrt{x-6} - 3}{2}$
Explanation
$f(x) = 4x^2 + 12x + 15$
Using the formula $\text{Last Term}$ = $\dfrac{(\text{Middle Term})^2}{4 \times \text{First Term}}$ = $\dfrac{(12)^2}{4 \times 4}$ = $9$
∴ Adding and subtracting 9 from the equation, we get