KARNATAKA-2nd-PUC-2023-Mathematics-Sample-Paper
KARNATAKA 2nd PUC 2023 Mathematics Sample Paper
Question 22
Prove that $tan^{-1}x + cot^{-1}x$ = $\dfrac{\pi}{2}$
Solution
Let $tan^{-1}x = y$ ----(1)
∴ $x = tany$ ⇒ $x = cot \left( \dfrac{\pi}{2} -y \right) $
∴ $cot^{-1}x$ = $ \dfrac{\pi}{2} -y $ ----(2)
However, $y = tan^{-1}x$ from (1)
Putting this value of $y$ is equation (2), we get,
$cot^{-1}x$ = $ \dfrac{\pi}{2} -tan^{-1}x $
⇒ $tan^{-1}x + cot^{-1}x$ = $ \dfrac{\pi}{2} $
Thus proved.
eda04387-88d9-11ed-94f3-5405dbb1cb03