KARNATAKA-2nd-PUC-2023-Mathematics-Sample-Paper
KARNATAKA 2nd PUC 2023 Mathematics Sample Paper
Question 51
Solve the following system of equations by matrix method:
$x-y+z = 4$; $x+y+z=2$ and $2x+y-3z=0$
Solution
$A$ = $\left[ \begin{matrix}
1 & \phantom{-}-1 & \phantom{-}1 \\
1 & \phantom{-}1 & \phantom{-}1 \\
2 & \phantom{-}1 & \phantom{-}-3 \\
\end{matrix} \right]$, $B$ = $\left[ \begin{matrix}
4 \\
2 \\
0 \\
\end{matrix} \right]$, X = $\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]$
$|A|$ = $1(-1-3)+1(-3-2)+1(1-2)$ = $-10 \ne 0$
Hence inverse of A exists.
$A_{11} = -4$, $A_{12} = 5$, $A_{13} = -1$
$A_{21} = -2$, $A_{22} = -5$, $A_{23} = -3$
$A_{31} = -2$, $A_{32} = 0$, $A_{33} = 2$
∴ adj $A$ = $\left[ \begin{matrix}
-4 & \phantom{-}5 & \phantom{-}-1 \\
-2 & \phantom{-}-5 & \phantom{-}-3 \\
-2 & \phantom{-}0 & \phantom{-}2 \\
\end{matrix} \right]^T$ = $\left[ \begin{matrix}
-4 & \phantom{-}-2 & \phantom{-}-2 \\
5 & \phantom{-}-5 & \phantom{-}0 \\
-1 & \phantom{-}-3 & \phantom{-}2 \\
\end{matrix} \right] $
$A^{-1}$ = $\dfrac{1}{|A|}$ adj $A$ = $\dfrac{1}{-10}$$\left[ \begin{matrix}
-4 & \phantom{-}-2 & \phantom{-}-2 \\
5 & \phantom{-}-5 & \phantom{-}0 \\
-1 & \phantom{-}-3 & \phantom{-}2 \\
\end{matrix} \right] $
$X = A^{-1}B$ = $\dfrac{1}{-10}$$\left[ \begin{matrix}
-4 & \phantom{-}-2 & \phantom{-}-2 \\
5 & \phantom{-}-5 & \phantom{-}0 \\
-1 & \phantom{-}-3 & \phantom{-}2 \\
\end{matrix} \right] $ $\left[ \begin{matrix}
4 \\
2 \\
0 \\
\end{matrix} \right]$ = $\dfrac{1}{10}$$\left[ \begin{matrix}
20 \\
-10 \\
10 \\
\end{matrix} \right]$
∴ $\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]$ = $\left[ \begin{matrix}
2 \\
-1 \\
1 \\
\end{matrix} \right]$
∴ $x=2$, $y=-1$ and $z=1$
682e2a8b-90e9-11ed-be7f-5405dbb1cb03