KARNATAKA-2nd-PUC-2023-Mathematics-Sample-Paper
KARNATAKA 2nd PUC 2023 Mathematics Sample Paper
Question 6
$\int e^x \left( \dfrac{1}{x} - \dfrac{1}{x^2} \right)$ $dx$
Solution
The correct answer is $ \dfrac{e^x}{x}$ + $C$
Explanation
We know that $\int e^x [f(x) + f ’(x)]$ $dx$ = $e^x f(x)$ + $C$
The given integrand is of the form $e^x [f(x) + f ’(x)]$
where $f(x)$ = $\dfrac{1}{x}$ and $f'(x)$ = $-\dfrac{1}{x^2}$
∴ $\int e^x \left( \dfrac{1}{x} - \dfrac{1}{x^2} \right)$ $dx$ = $e^x \dfrac{1}{x}$ + $C$ = $ \dfrac{e^x}{x}$ + $C$
807541a8-8857-11ed-94f3-5405dbb1cb03