NCERT Exercise 3.3
1
Solve the following pairs of linear equations by the substitution method:
(i)
$x + y = 14$
$x - y = 4$
(ii)
$s - t = 3$
$\dfrac{s}{3} + \dfrac{t}{2} = 6$
(iii)
$3x - y = 3$
$9x - 3y = 9$
(iv)
$0.2x + 0.3y = 1.3$
$0.4x + 0.5y = 2.3$
(v)
$\sqrt{2}x + \sqrt{3}y = 0$
$\sqrt{3}x - \sqrt{8}y = 0$
(iv)
$\dfrac{3}{2}x - \dfrac{5}{3}y = -2$
$\dfrac{x}{3} + \dfrac{y}{2} = \dfrac{13}{6}$
Solution
(i)
$x + y = 14$ -----(i)
$x - y = 4$ -----(ii)
From (ii), $x = y + 4$
Putting this in equation (i), we get
$4 + y + y = 14 ⇒ 2y = 10 ⇒ y = 5$
Putting value of y in equation (i), we get,
$x + 5 = 14 ⇒ x = 14 – 5 = 9$
Therefore, $x = 9$ and $y = 5$
(ii)
$s - t = 3$ -----(i)
$\dfrac{s}{3} + \dfrac{t}{2} = 6$ -----(ii)
From (i), $s = t + 3$
Putting this in equation (ii), we get
$\dfrac{t + 3}{3} + \dfrac{t}{2} = 6$
$\dfrac{6 + 2t + 3}{6} = 6$
$⇒ 5t + 6 = 36 ⇒ 5t = 30 ⇒ t = 6$
Putting value of t in equation (i), we get,
$s - 6 = 3 ⇒ s = 9$
Therefore, $s = 9$ and $t = 6$
(iii)
$3x - y = 3$ -----(i)
$9x - 3y = 9$ -----(ii)
From (i), $3x - y = 3 ⇒ y = 3x - 3$
Putting this in equation (ii), we get
$9x - 3(3x - 3) = 9 ⇒ 9 = 9$
Hence, this pair of linear equations have infinitely many solutions
(iv)
$0.2x + 0.3y = 1.3$ -----(i)
$0.4x + 0.5y = 2.3$ -----(ii)
From (i), $0.2x + 0.3y = 1.3$
$⇒ x = \dfrac{1.3 - 0.3y}{0.2}$
Putting this in equation (ii), we get
$0.4× \dfrac{1.3 - 0.3y}{0.2} + 0.5y = 2.3$
$2(1.3 - 0.3y) + 0.5y = 2.3$
$2.6 - 0.6y + 0.5y = 2.3 ⇒ y = 3$
Putting value of y in equation (i), we get,
$0.2x + 0.3 × 3 = 1.3 ⇒ x = 2$
Therefore, $x = 2$ and $y = 3$
(v)
$\sqrt{2}x + \sqrt{3}y = 0$ -----(i)
$\sqrt{3}x - \sqrt{8}y = 0$ -----(ii)
From (i), $y = - \dfrac{\sqrt{2}x}{\sqrt{3}}$
Putting this in equation (ii), we get
$\sqrt{3}x - \sqrt{8}$ × $\dfrac{-\sqrt{2}x}{\sqrt{3}} = 0$
$⇒ 3x + 4x = 0 ⇒ x = 0$
Putting value of x in equation (i), we get,
$\sqrt{3} × 0 - \sqrt{8}y = 0 ⇒ y = 0$
Therefore, $x = 0$ and $y = 0$
(vi)
$\dfrac{3}{2}x - \dfrac{5}{3}y = -2$ -----(i)
$\dfrac{x}{3} + \dfrac{y}{2} = \dfrac{13}{6}$ -----(ii)
From (ii), $x = 3× \left(\dfrac{13}{6} - \dfrac{y}{2}\right)$
$⇒ x = \left(\dfrac{13}{2} - \dfrac{3y}{2}\right)$
Putting this in equation (i), we get
$\dfrac{3}{2} × \left(\dfrac{13}{2} - \dfrac{3y}{2}\right) - \dfrac{5}{3}y = -2$
$⇒ \left(\dfrac{39}{4} - \dfrac{9y}{4}\right) - \dfrac{5y}{3} = -2$
$⇒ \dfrac{-27y - 20y}{12} = -2 - \dfrac{39}{4} $
$⇒ \dfrac{-47y}{12} = \dfrac{-47}{4} ⇒ y = 3$
Putting this in equation (ii), we get
$\dfrac{x}{3} + \dfrac{3}{2} = \dfrac{13}{6} ⇒ x = 2$ -----(ii)
Therefore, $x = 2$ and $y = 3$