NCERT Exercise 3.4
1
Solve the following pair of linear equations by the elimination method and the substitution method:
(i) $x + y = 5$ and $2x – 3y = 4$
(ii) $3x + 4y = 10$ and $2x – 2y = 2$
(iii) $3x − 5y – 4 = 0$ and $9x = 2y + 7$
(iv) $ \dfrac{x}{2} + \dfrac{2y}{3} = -1$ and $ x - \dfrac{y}{3} = 3$
Solution
(i)
$x + y = 5$ -----(i)
$2x – 3y = 4$ -----(ii)
Elimination method:
Multiplying equation (i) by 2, we get equation (iii)
$2x + 2y = 10$ -----(iii)
Subtracting equation (ii) from (iii), we get
$5y = 6 ⇒ y = \dfrac{6}{5} $
Putting value of y in (i), we get
$x + \dfrac{6}{5} = 5 ⇒ x = 5 − \dfrac{6}{5} = \dfrac{19}{5}$
Therefore, $x = \dfrac{19}{5}$ and $y = \dfrac{6}{5}$
Substitution method:
From equation (i), we get
$ x = 5 - y $
Putting this in equation (ii), we get
$ 2(5 - y) - 3y = 4$
$ ⇒ 10 - 5y = 4 ⇒ y = \dfrac{6}{5}$
Putting value of y in (i), we get
$ x + \dfrac{6}{5} = 5$
$ \dfrac{5x + 6}{5} = 5 ⇒ x = \dfrac{19}{5} $
Therefore, $x = \dfrac{19}{5}$ and $y = \dfrac{6}{5}$
(ii)
$3x + 4y = 10$ -----(i)
$2x – 2y = 2$ -----(ii)
Elimination method:
Multiplying equation (ii) by 2, we get equation (iii)
$4x - 4y = 4$ -----(iii)
Adding equation (i) and (iii), we get
$7x = 14 ⇒ x = 2 $
Putting value of x in (i), we get
$ 3 × 2 + 4y = 10 ⇒ y = 1$
Therefore, $x = 2$ and $y = 1$
Substitution method:
From equation (ii), we get
$ 2x = 2y + 2 ⇒ x = y + 1$
Putting this in equation (i), we get
$3(y + 1) + 4y = 10$
$ ⇒ 7y = 7 ⇒ y = 1$
Putting value of y in (ii), we get
$ 2x - 2 × 1 = 2$
$ ⇒ 2x - 2 = 2 ⇒ x = 2 $
Therefore, $x = 2$ and $y = 1$
(iii)
$3x − 5y – 4 = 0$ -----(i)
$9x = 2y + 7$ -----(ii)
Elimination method:
Multiplying equation (i) by 3, we get equation (iii)
$9x - 15y - 12 = 0$ -----(iii)
Subtracting equation (ii) and (iii), we get
$ -13y - 5 = 0 ⇒ y = \dfrac{-5}{13} $
Putting value of y in (i), we get
$ 3x -5 \dfrac{-5}{13} - 4 = 0 $
$⇒ 3x = 4 - \dfrac{25}{13} = \dfrac{27}{13}$
$⇒ x = \dfrac{9}{13}$
Therefore, $x = \dfrac{9}{13}$ and $y = \dfrac{-5}{13}$
Substitution method:
From equation (i), we get
$ 3x = 5y + 4 ⇒ x = \dfrac{5y + 4}{3}$
Putting this in equation (ii), we get
$9 \dfrac{5y + 4}{3} - 2y = 7$
$ ⇒ 12 + 15y - 2y = 7 ⇒ y = \dfrac{-5}{13}$
Putting value of y in (i), we get
$ 3x - 5 \dfrac{-5}{13} = 4$
$ ⇒ 3x = 4 - \dfrac{25}{13} = \dfrac{27}{13} $
$ ⇒ x = \dfrac{9}{13} $
Therefore, $x = \dfrac{9}{13}$ and $y = \dfrac{-5}{13}$
(iv)
$ \dfrac{x}{2} + \dfrac{2y}{3} = -1$ ----- (i)
$ x - \dfrac{y}{3} = 3$ -----(ii)
Elimination method:
Multiplying equation (ii) by 2, we get (iii)
$ 2x - \dfrac{2y}{3} = 3$ -----(iii)
Adding (iii) and (i), we get
$ ⇒ \frac{5}{2}x = 5 ⇒ x = 2$
Putting value of $x$ in (ii), we get
$ 2 - \dfrac{y}{3} = 3 ⇒ y = -3$
Therefore, x = 2 and y = −3
Substitution method:
From equation (ii), we get
$ x = \dfrac{y}{3} + 3 ⇒ x = \dfrac{y + 9}{3}$
Putting this in equation (i), we get
$ \dfrac{y + 9}{6} + \dfrac{2y}{3} = -1$
$ \dfrac{y + 9 + 4y}{6} = -1$
$ 5y + 9 = -6 ⇒ y = -3$
Putting value of y in (i), we get
$ \dfrac{x}{2} + \dfrac{2 × -3}{3} = -1$
$ \dfrac{x}{2} -2 = -1 ⇒ x = 2 $
Therefore, x = 2 and y = −3