2
Find the roots of the quadratic equations given in Q.1 above by applying quadratic formula.
Solution:
For a quadratic equation $ax^2 + bx + c = 0$
if $b^2 - 4ac ≥ 0$, then the roots of the equation are given by $x = \dfrac{-b ± \sqrt{b^2 - 4ac}}{2a}$
if $b^2 - 4ac < 0$, then real roots do not exist for the quadratic equation.
(i) $2x^2 - 7x + 3 = 0$
Here $a = 2, b = -7, c = 3$
∴ $b^2 - 4ac$ = $(-7)^2 - 4 × 2 × 3 = 25$
∴ the roots are
$x = \dfrac{-b ± \sqrt{b^2 - 4ac}}{2a}$
$ = \dfrac{-(-7) ± \sqrt{25}}{4}$
$ = \dfrac{7 ± 5}{4}$
∴ $x = \dfrac{7 + 5}{4}$ or $x = \dfrac{7 - 5}{4}$
⇒ $x = 3$ or $x = \dfrac{1}{2}$
Hence roots are $3, \dfrac{1}{2}$
(ii) $2x^2 + x - 4 = 0$
Here $a = 2, b = 1, c = -4$
∴ $b^2 - 4ac$ = $(1)^2 - 4 × 2 × -4 = 33$
∴ the roots are
$x = \dfrac{-b ± \sqrt{b^2 - 4ac}}{2a}$
$ = \dfrac{-(1) ± \sqrt{33}}{4}$
∴ $x = \dfrac{-1 + \sqrt{33}}{4}$ or $x = \dfrac{-1 - \sqrt{33}}{4}$
Hence roots are $\dfrac{-1 + \sqrt{33}}{4}$, $\dfrac{-1 - \sqrt{33}}{4}$
(iii) $4x^2 + 4\sqrt{3}x + 3 = 0$
Here $a = 4, b = 4\sqrt{3}, c = 3$
∴ $b^2 - 4ac$ = $(4\sqrt{3})^2 - 4 × 4 × 3 = 0$
∴ the roots are
$x = \dfrac{-b ± \sqrt{b^2 - 4ac}}{2a}$
$ = \dfrac{-4\sqrt{3} ± \sqrt{0}}{2 × 4}$
$ = \dfrac{-\sqrt{3}}{2}$
⇒ $x = \dfrac{-\sqrt{3}}{2}$ or $x = \dfrac{-\sqrt{3}}{2}$
Hence roots are $\dfrac{-\sqrt{3}}{2}, \dfrac{-\sqrt{3}}{2}$
(iv) $2x^2 + x + 4 = 0$
Here $a = 2, b = 1, c = 4$
∴ $b^2 - 4ac$ = $(1)^2 - 4 × 2 × 4 = -31$
As $b^2 - 4ac$ < 0, no real roots exist for the quadratic equation.