Solution
For a quadratic equation $ax^2 + bx + c = 0$
I. If $b^2 - 4ac > 0$, two distinct real roots exist
II. If $b^2 - 4ac = 0$, two equal real roots exist
III. If $b^2 - 4ac < 0$, no real roots exist
(i) $2x^2 - 3x + 5 = 0$
In this quadratic equation,
$a = 2, b = -3, c = 5$
$b^2 - 4ac$ = $(-3)^2 - 4 × 2 × 5$ = $9 - 40 = -31$
As $b^2 - 4ac < 0$, no real roots exist.
(ii) $3x^2 - 4\sqrt{3}x + 4 = 0$
In this quadratic equation,
$a = 3, b = -4\sqrt{3}, c = 4$
$b^2 - 4ac$ = $(-4\sqrt{3})^2 - 4 × 3 × 4$ = $48 - 48 = 0$
As $b^2 - 4ac = 0$, two equal real roots exist.
The roots will be $\dfrac{-b}{2a}$ and $\dfrac{-b}{2a}$
$\dfrac{-b}{2a}$ = $\dfrac{-(-4\sqrt{3})}{2 × 3}$ = $\dfrac{4\sqrt{3}}{6}$ = $\dfrac{2}{\sqrt{3}}$
Therefore, the roots are $\dfrac{2}{\sqrt{3}}$ and $\dfrac{2}{\sqrt{3}}$
(iii) $2x^2 - 6x + 3 = 0$
In this quadratic equation,
$a = 2, b = -6, c = 3$
$b^2 - 4ac$ = $(-6)^2 - 4 × 2 × 3$ = $36 - 24 = 12$
As $b^2 - 4ac > 0$, two distinct real roots exist.
The roots can be found out as
$x = \dfrac{-b ± \sqrt{b^2 - 4ac}}{2a}$
$ = \dfrac{-(-6) ± \sqrt{12}}{2 × 2}$
$ = \dfrac{6 ± 2\sqrt{3}}{4}$
$ = \dfrac{3 ± \sqrt{3}}{2}$
Therefore, the roots are $\dfrac{3 + \sqrt{3}}{2}$ and $\dfrac{3 - \sqrt{3}}{2}$