We know that cot2A+1=cosec2A ⇒ cosecA=√(1+cot2A)
sin A= \dfrac{1}{cosec A} = \dfrac{1}{\sqrt{(1+cot²A)}}
tan A = \dfrac{1}{cot A}
sec A = \sqrt{(1 + tan^2A)}
∴ sec A = \sqrt{\left(1 + \dfrac{1}{cot^2A}\right)}
= \sqrt{\left(\dfrac{cot^2A + 1}{cot^2A}\right)}
= \dfrac{\sqrt{1 + cot^2A}}{cot A}
Solution
We know that sin^2 A + cos^2 A = 1
∴ sin^2 A = 1 − cos^2 A
⇒ sin A= \sqrt{1-\left ( \dfrac{1}{secA} \right )^{2}}
=\sqrt{\dfrac{sec^{2}A-1}{sec^{2}A}} = \dfrac{\sqrt{sec^{2}A-1}}{secA}
tan^2A + 1 = sec^2A
∴ tan^2A = sec^2A − 1
⇒ tan A = \sqrt{sec^{2}A-1}
cotA= \dfrac{cosA}{sinA}=\dfrac{\dfrac{1}{secA}}{\dfrac{\sqrt{sec^{2}A-1}}{secA}}
=\dfrac{1}{\sqrt{sec^{2}A-1}}
cosecA=\dfrac{1}{sinA}=\dfrac{secA}{\sqrt{sec^{2}A-1}}
Solution
(i) \dfrac{sin^{2}63^°+sin^{2}27°}{cos^{2}17°+cos^{2}73°}
= \dfrac{sin^{2}63^°+sin^{2}(90° - 63°)}{cos^{2}(90° - 73°)+cos^{2}73°}
= \dfrac{sin^{2}63^°+cos^{2}63°}{sin^{2}73°+cos^{2}73°} = 1
(ii) sin25°cos65° + cos25°sin65°
= sin25°cos(90° - 65°) + cos25°sin(90° - 65°)
= sin^225° + cos^225° = 1
Solution
(i) 9sec^{2}A-9tan^{2}A
= 9 (sec^2A − tan^2A)
= 9 (1) = 9
[ ∵ sec2 A − tan2 A = 1]
Hence, option (B) is correct.
(ii)
(1 + tan θ + sec θ) (1 + cot θ − cosec θ)
=\left(1+\dfrac{sinθ}{cosθ}+\dfrac{1}{cosθ}\right)
\left(1+\dfrac{cosθ}{sinθ} - \dfrac{1}{sinθ } \right )
=\left(\dfrac{cosθ + sinθ +1}{cosθ } \right )
\left ( \dfrac{sinθ +cosθ -1}{sinθ } \right )
\dfrac{\left ( sinθ +cosθ \right )^{2}-(1)^{2}}{sinθ cosθ }
=2
Hence,option (C) is correct.
(iii) (secA + tanA) (1 − sinA)
= \left( \dfrac{1}{cosA}+\dfrac{sinA}{cosA} \right)\left(1 - sinA\right)
=\left (\dfrac{1 + sinA}{cosA} \right )\left ( 1-sinA \right )
=\dfrac{1-sin^{2}A}{cosA}=\dfrac{cos^{2}}{cosA} = cosA
Hence, option (D) is correct.
(iv) \dfrac{1+tan^{2}A}{1+cot^{2}A}
\dfrac{1+\dfrac{sin^{2}A}{cos^{2}A}}{1+\dfrac{cos^{2}A}{sin^{2}A}}
=\dfrac{\dfrac{cos^{2}A+sin^{2}A}{cos^{2}A}}{\dfrac{sin^{2}A+cos^{2}A}{sin^{2}A}}
=\dfrac{\dfrac{1}{cos^{2}A}}{\dfrac{1}{sin^{2}A}}
=\dfrac{sin^{2}A}{cos^{2}A}= tan^{2}A
Hence, option (D) is correct.
Solution
(i) LHS = (cosecθ - cotθ)^{2}
= \left(\dfrac{1}{sinθ} - \dfrac{cosθ}{sinθ}\right)^2
= \left(\dfrac{1 - cosθ}{sinθ}\right)^2
= \dfrac{(1 - cosθ)^2}{sin^2θ}
= \dfrac{(1 - cosθ)(1 - cosθ)}{(1 - cosθ)(1 + cosθ)}
= \dfrac{1 - cosθ}{1 + cosθ} = RHS
Hence proved.
(ii) LHS = \dfrac{cosA}{1 + sinA} + \dfrac{1 + sinA}{cosA}
= \dfrac{cos^2A + sin^2A + 1 + 2sinA}{(1 + sinA)cosA}
= \dfrac{2 + 2sinA}{(1 + sinA)cosA}
= \dfrac{2(1 + sinA)}{(1 + sinA)cosA}
= \dfrac{2}{cosA}
= 2 secA = RHS
Hence proved.
(iii) LHS = \dfrac{tanθ}{1-cotθ} + \dfrac{cotθ}{1 - tanθ}
= \dfrac{\dfrac{sinθ}{cosθ}}{1-\dfrac{cosθ}{sinθ}}
+ \dfrac{\dfrac{cosθ}{sinθ}}{1 - \dfrac{sinθ}{cosθ}}
= \dfrac{sinθsinθ}{cosθ(1-cosθ)}
+ \dfrac{cosθcosθ}{sinθ(1 - sinθ)}
= \dfrac{sin^3θ - cos^3θ}{sinθcosθ(sinθ - cosθ)}
= \dfrac{(sinθ - cosθ)(sin^2θ + cos^2θ + sinθcosθ)}{sinθcosθ(sinθ - cosθ)}
= \dfrac{(sin^2θ + cos^2θ + sinθcosθ)}{sinθcosθ}
= \dfrac{(1 + sinθcosθ)}{sinθcosθ}
= \dfrac{sinθcosθ}{sinθcosθ} + \dfrac{1}{cosθ} × \dfrac{1}{sinθ}
= 1 + secθcosecθ = RHS
Hence proved.
(iv) LHS = \dfrac{1+secA}{secA}
= \dfrac{1+\dfrac{1}{cosA}}{\dfrac{1}{cosA}}
= 1 + cosA
Multiplying and dividing by (1 - cos A)
= \dfrac{(1 + cosA)(1 - cosA)}{1 - cosA}
= \dfrac{(1 - cos^2A)}{1 - cosA}
= \dfrac{sin^2A}{1 - cosA} = RHS
Hence proved
(v) LHS = \dfrac{cosA-sinA+1}{cosA+sinA-1}
Dividing numerator and denominator by sinA
= \dfrac{\dfrac{cosA}{sinA} - \dfrac{sinA}{sinA} + \dfrac{1}{sinA}}{\dfrac{cosA}{sinA} + \dfrac{sinA}{sinA} - \dfrac{1}{sinA}}
= \dfrac{cotA - 1 + cosecA}{cotA + 1 - cosecA}
= \dfrac{cotA + cosecA - 1}{cotA - cosecA + 1}
Using the identity cosec^{2}A=1+cot^{2}A ⇒ cosec^{2}A - cot^{2}A = 1
= \dfrac{cotA + cosecA - (cosec^{2}A - cot^{2}A)}{cotA - cosecA + 1}
= \dfrac{cotA + cosecA - (cosecA + cotA)(cosecA - cotA)}{cotA - cosecA + 1}
= \dfrac{(cotA + cosecA) (1 - (cosecA - cotA))}{cotA - cosecA + 1}
= \dfrac{(cotA + cosecA) (1 - cosecA + cotA)}{cotA - cosecA + 1}
= cosecA + cotA = RHS
Hence proved.
(vi) LHS = \sqrt{\dfrac{1+sinA}{1-sinA}}
= \sqrt{\dfrac{(1+sinA)(1+sinA)}{(1-sinA)(1+sinA)}}
= \sqrt{\dfrac{(1+sinA)^2}{1-sin^2A}}
= \sqrt{\dfrac{(1+sinA)^2}{cos^2A}}
= \dfrac{1+sinA}{cosA}
= \dfrac{1}{cosA} + \dfrac{sinA}{cosA}
= secA + tanA = RHS
Hence proved.
(vii) LHS = \dfrac{sinθ - 2sin^{3}θ }{2cos^{3}θ -cosθ }
=\dfrac{sinθ(1 - 2sin^{2}θ) }{cosθ(2cos^{2}θ - 1) }
=\dfrac{sinθ(sin^{2}θ + cos^{2}θ - 2sin^{2}θ) }{cosθ(2cos^{2}θ - sin^{2}θ - cos^{2}θ) }
=\dfrac{sinθ(cos^{2}θ - sin^{2}θ) }{cosθ(cos^{2}θ - sin^{2}θ)}
=\dfrac{sinθ}{cosθ}
=tanθ = RHS
Hence proved.
(viii) LHS = (sinA+cosecA)^{2}+(cosA+secA)^{2}
= sin^2A + cosec^2A + 2 sinAcosecA + cos^2A + sec^2A + 2cosAsecA
= (sin^2A + cos^2A) + cosec^2A + 2 + sec^2A + 2
= 1 + (1 + cot^2A) + 2 + (1 + cot^2A) + 2
= 7 + tan^{2}A + cot^{2}A = RHS
Hence proved.
(ix) LHS = (cosecA-sinA)(secA-cosA)
= \left(cosecA-\dfrac{1}{cosecA}\right)\left(secA-\dfrac{1}{secA}\right)
= \left(\dfrac{cosec^2A-1}{cosecA}\right)\left(\dfrac{sec^2A - 1}{secA}\right)
= \left(\dfrac{cot^2A}{cosecA}\right)\left(\dfrac{tan^2A}{secA}\right)
= \left(cot^2A sinA)\right)\left(tan^2AcosA)\right)
= sinAcosA
RHS = \dfrac{1}{tanA+cotA}
= \dfrac{1}{\dfrac{sinA}{cosA}+\dfrac{cosA}{sinA}}
= \dfrac{sinA cosA}{sin^2A + cos^2}
= sinAcosA
Thus LHS = RHS
(x) LHS = \left(\dfrac{1+tan^{2}A}{1+cot^{2}A}\right)
= \left(\dfrac{sec^{2}A}{cosec^{2}A}\right)
= \left(\dfrac{\dfrac{1}{cos^{2}A}}{\dfrac{1}{sin^{2}A}}\right)
= \left(\dfrac{sin^{2}A}{cos^{2}A}\right)
= tan^{2}A
RHS = (\dfrac{1-tanA}{1-cotA})^{2}
= \left(\dfrac{1-\dfrac{sinA}{cosA}}{1-\dfrac{cosA}{sinA}}\right)^{2}
= \left(\dfrac{\dfrac{cosA - sinA}{cosA}}{\dfrac{sinA - cosA}{sinA}}\right)^{2}
= \left(\dfrac{sinA}{cosA}\right)^{2}
= \left(tanA\right)^{2}
= tan^{2}A
Thus LHS = RHS