Processing math: 1%
Happy people

Trigonometry - Solved Examples

Additional Examples

Exercise 8.3

Trigonometry Concepts

NCERT Exercise 8.4



1
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.


Solution

We know that cot2A+1=cosec2AcosecA=(1+cot2A)
sin A= \dfrac{1}{cosec A} = \dfrac{1}{\sqrt{(1+cot²A)}}

tan A = \dfrac{1}{cot A}

sec A = \sqrt{(1 + tan^2A)}

∴ sec A = \sqrt{\left(1 + \dfrac{1}{cot^2A}\right)} = \sqrt{\left(\dfrac{cot^2A + 1}{cot^2A}\right)} = \dfrac{\sqrt{1 + cot^2A}}{cot A}





2
Write all the other trigonometric ratios of ∠ A in terms of sec A.


Solution
We know that sin^2 A + cos^2 A = 1
∴ sin^2 A = 1 − cos^2 A
sin A= \sqrt{1-\left ( \dfrac{1}{secA} \right )^{2}} =\sqrt{\dfrac{sec^{2}A-1}{sec^{2}A}} = \dfrac{\sqrt{sec^{2}A-1}}{secA}


tan^2A + 1 = sec^2A
∴ tan^2A = sec^2A − 1 ⇒ tan A = \sqrt{sec^{2}A-1}

cotA= \dfrac{cosA}{sinA}=\dfrac{\dfrac{1}{secA}}{\dfrac{\sqrt{sec^{2}A-1}}{secA}} =\dfrac{1}{\sqrt{sec^{2}A-1}}

cosecA=\dfrac{1}{sinA}=\dfrac{secA}{\sqrt{sec^{2}A-1}}





3
Evaluate:

(i) \dfrac{sin^{2}63^°+sin^{2}27°}{cos^{2}17°+cos^{2}73°}

(ii) sin25°cos65°+cos25°sin65°


Solution

(i) \dfrac{sin^{2}63^°+sin^{2}27°}{cos^{2}17°+cos^{2}73°}

= \dfrac{sin^{2}63^°+sin^{2}(90° - 63°)}{cos^{2}(90° - 73°)+cos^{2}73°}

= \dfrac{sin^{2}63^°+cos^{2}63°}{sin^{2}73°+cos^{2}73°} = 1



(ii) sin25°cos65° + cos25°sin65°

= sin25°cos(90° - 65°) + cos25°sin(90° - 65°)

= sin^225° + cos^225° = 1





4
Choose the correct option. Justify your choice.

(i) 9sec^{2}A - 9tan^{2}A =

(A) 1
(B) 9
(C) 8
(D) 0

(ii) (1+tanθ+secθ)(1+cotθ-cosecθ )=

(A) 0
(B) 1
(C) 2
(D) –1

(iii)(sec A + tan A) (1 – sin A) =

(A) sec A
(B) sin A
(C) cosec A
(D) cos A

(iv) \dfrac{1+tan^{2}A}{1+cot^{2}A}

(A) sec^{2}A
(B) -1
(C) cot^{2}A
(D) tan^{2}A


Solution
(i) 9sec^{2}A-9tan^{2}A
= 9 (sec^2A − tan^2A)
= 9 (1) = 9
[ ∵ sec2 A − tan2 A = 1]

Hence, option (B) is correct.

(ii) (1 + tan θ + sec θ) (1 + cot θ − cosec θ)
=\left(1+\dfrac{sinθ}{cosθ}+\dfrac{1}{cosθ}\right) \left(1+\dfrac{cosθ}{sinθ} - \dfrac{1}{sinθ } \right )
=\left(\dfrac{cosθ + sinθ +1}{cosθ } \right ) \left ( \dfrac{sinθ +cosθ -1}{sinθ } \right ) \dfrac{\left ( sinθ +cosθ \right )^{2}-(1)^{2}}{sinθ cosθ } =2

Hence,option (C) is correct.

(iii) (secA + tanA) (1 − sinA)
= \left( \dfrac{1}{cosA}+\dfrac{sinA}{cosA} \right)\left(1 - sinA\right) =\left (\dfrac{1 + sinA}{cosA} \right )\left ( 1-sinA \right ) =\dfrac{1-sin^{2}A}{cosA}=\dfrac{cos^{2}}{cosA} = cosA

Hence, option (D) is correct.

(iv) \dfrac{1+tan^{2}A}{1+cot^{2}A}
\dfrac{1+\dfrac{sin^{2}A}{cos^{2}A}}{1+\dfrac{cos^{2}A}{sin^{2}A}} =\dfrac{\dfrac{cos^{2}A+sin^{2}A}{cos^{2}A}}{\dfrac{sin^{2}A+cos^{2}A}{sin^{2}A}} =\dfrac{\dfrac{1}{cos^{2}A}}{\dfrac{1}{sin^{2}A}} =\dfrac{sin^{2}A}{cos^{2}A}= tan^{2}A

Hence, option (D) is correct.





5
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

(i) (cosecθ - cotθ)^{2}=\dfrac{1-cosθ }{1+cosθ}

(ii) \dfrac{cosA}{1+sinA} + \dfrac{1+sinA}{cosA}=2secA

(iii) \dfrac{tanθ}{1-cotθ} + \dfrac{cotθ}{1 - tanθ} = 1+secθ cosecθ

[Hint : Write the expression in terms of sinθ and cosθ]

(iv) \dfrac{1+secA}{secA}=\dfrac{sin^{2}A}{1-cosA}

[Hint :Simplify LHS and RHS separately]

(v) \dfrac{cosA-sinA+1}{cosA+sinA-1}=cosecA+cotA, using the identity cosec^{2}A=1+cot^{2}A.

(vi) \sqrt{\dfrac{1+sinA}{1-sinA}}=secA+tanA

(vii) \dfrac{sinθ -2sin^{3}θ }{2cos^{3}θ -cosθ }=tanθ

(viii) (sinA+cosecA)^{2}+(cosA+secA)^{2}=7+tan^{2}A+cot^{2}A

(ix) (cosecA-sinA)(secA-cosA)=\dfrac{1}{tanA+cotA}

[Hint: Simplify LHS and RHS separately]

(x) (\dfrac{1+tan^{2}A}{1+cot^{2}A})=(\dfrac{1-tanA}{1-cotA})^{2}=tan^{2}A



Solution
(i) LHS = (cosecθ - cotθ)^{2}
= \left(\dfrac{1}{sinθ} - \dfrac{cosθ}{sinθ}\right)^2
= \left(\dfrac{1 - cosθ}{sinθ}\right)^2
= \dfrac{(1 - cosθ)^2}{sin^2θ}
= \dfrac{(1 - cosθ)(1 - cosθ)}{(1 - cosθ)(1 + cosθ)}
= \dfrac{1 - cosθ}{1 + cosθ} = RHS

Hence proved.

(ii) LHS = \dfrac{cosA}{1 + sinA} + \dfrac{1 + sinA}{cosA}
= \dfrac{cos^2A + sin^2A + 1 + 2sinA}{(1 + sinA)cosA}
= \dfrac{2 + 2sinA}{(1 + sinA)cosA}
= \dfrac{2(1 + sinA)}{(1 + sinA)cosA}
= \dfrac{2}{cosA}
= 2 secA = RHS

Hence proved.

(iii) LHS = \dfrac{tanθ}{1-cotθ} + \dfrac{cotθ}{1 - tanθ}

= \dfrac{\dfrac{sinθ}{cosθ}}{1-\dfrac{cosθ}{sinθ}} + \dfrac{\dfrac{cosθ}{sinθ}}{1 - \dfrac{sinθ}{cosθ}}

= \dfrac{sinθsinθ}{cosθ(1-cosθ)} + \dfrac{cosθcosθ}{sinθ(1 - sinθ)}

= \dfrac{sin^3θ - cos^3θ}{sinθcosθ(sinθ - cosθ)}

= \dfrac{(sinθ - cosθ)(sin^2θ + cos^2θ + sinθcosθ)}{sinθcosθ(sinθ - cosθ)}

= \dfrac{(sin^2θ + cos^2θ + sinθcosθ)}{sinθcosθ}

= \dfrac{(1 + sinθcosθ)}{sinθcosθ}

= \dfrac{sinθcosθ}{sinθcosθ} + \dfrac{1}{cosθ} × \dfrac{1}{sinθ}

= 1 + secθcosecθ = RHS

Hence proved.


(iv) LHS = \dfrac{1+secA}{secA} = \dfrac{1+\dfrac{1}{cosA}}{\dfrac{1}{cosA}} = 1 + cosA

Multiplying and dividing by (1 - cos A)

= \dfrac{(1 + cosA)(1 - cosA)}{1 - cosA}

= \dfrac{(1 - cos^2A)}{1 - cosA}

= \dfrac{sin^2A}{1 - cosA} = RHS

Hence proved


(v) LHS = \dfrac{cosA-sinA+1}{cosA+sinA-1}

Dividing numerator and denominator by sinA
= \dfrac{\dfrac{cosA}{sinA} - \dfrac{sinA}{sinA} + \dfrac{1}{sinA}}{\dfrac{cosA}{sinA} + \dfrac{sinA}{sinA} - \dfrac{1}{sinA}} = \dfrac{cotA - 1 + cosecA}{cotA + 1 - cosecA} = \dfrac{cotA + cosecA - 1}{cotA - cosecA + 1}

Using the identity cosec^{2}A=1+cot^{2}Acosec^{2}A - cot^{2}A = 1

= \dfrac{cotA + cosecA - (cosec^{2}A - cot^{2}A)}{cotA - cosecA + 1}

= \dfrac{cotA + cosecA - (cosecA + cotA)(cosecA - cotA)}{cotA - cosecA + 1}

= \dfrac{(cotA + cosecA) (1 - (cosecA - cotA))}{cotA - cosecA + 1}

= \dfrac{(cotA + cosecA) (1 - cosecA + cotA)}{cotA - cosecA + 1}

= cosecA + cotA = RHS

Hence proved.


(vi) LHS = \sqrt{\dfrac{1+sinA}{1-sinA}}

= \sqrt{\dfrac{(1+sinA)(1+sinA)}{(1-sinA)(1+sinA)}}

= \sqrt{\dfrac{(1+sinA)^2}{1-sin^2A}}

= \sqrt{\dfrac{(1+sinA)^2}{cos^2A}}

= \dfrac{1+sinA}{cosA}

= \dfrac{1}{cosA} + \dfrac{sinA}{cosA}

= secA + tanA = RHS

Hence proved.


(vii) LHS = \dfrac{sinθ - 2sin^{3}θ }{2cos^{3}θ -cosθ }
=\dfrac{sinθ(1 - 2sin^{2}θ) }{cosθ(2cos^{2}θ - 1) }
=\dfrac{sinθ(sin^{2}θ + cos^{2}θ - 2sin^{2}θ) }{cosθ(2cos^{2}θ - sin^{2}θ - cos^{2}θ) }
=\dfrac{sinθ(cos^{2}θ - sin^{2}θ) }{cosθ(cos^{2}θ - sin^{2}θ)}
=\dfrac{sinθ}{cosθ}
=tanθ = RHS

Hence proved.


(viii) LHS = (sinA+cosecA)^{2}+(cosA+secA)^{2}
= sin^2A + cosec^2A + 2 sinAcosecA + cos^2A + sec^2A + 2cosAsecA
= (sin^2A + cos^2A) + cosec^2A + 2 + sec^2A + 2
= 1 + (1 + cot^2A) + 2 + (1 + cot^2A) + 2
= 7 + tan^{2}A + cot^{2}A = RHS

Hence proved.


(ix) LHS = (cosecA-sinA)(secA-cosA)

= \left(cosecA-\dfrac{1}{cosecA}\right)\left(secA-\dfrac{1}{secA}\right)
= \left(\dfrac{cosec^2A-1}{cosecA}\right)\left(\dfrac{sec^2A - 1}{secA}\right)
= \left(\dfrac{cot^2A}{cosecA}\right)\left(\dfrac{tan^2A}{secA}\right)
= \left(cot^2A sinA)\right)\left(tan^2AcosA)\right)
= sinAcosA

RHS = \dfrac{1}{tanA+cotA}
= \dfrac{1}{\dfrac{sinA}{cosA}+\dfrac{cosA}{sinA}}

= \dfrac{sinA cosA}{sin^2A + cos^2}

= sinAcosA

Thus LHS = RHS

(x) LHS = \left(\dfrac{1+tan^{2}A}{1+cot^{2}A}\right)
= \left(\dfrac{sec^{2}A}{cosec^{2}A}\right) = \left(\dfrac{\dfrac{1}{cos^{2}A}}{\dfrac{1}{sin^{2}A}}\right) = \left(\dfrac{sin^{2}A}{cos^{2}A}\right) = tan^{2}A

RHS = (\dfrac{1-tanA}{1-cotA})^{2}

= \left(\dfrac{1-\dfrac{sinA}{cosA}}{1-\dfrac{cosA}{sinA}}\right)^{2} = \left(\dfrac{\dfrac{cosA - sinA}{cosA}}{\dfrac{sinA - cosA}{sinA}}\right)^{2} = \left(\dfrac{sinA}{cosA}\right)^{2} = \left(tanA\right)^{2} = tan^{2}A

Thus LHS = RHS