Happy people

Trigonometry - Solved Examples

Exercise 8.4

Concepts of Trigonometry

Additional Solved Examples



1
Find cot θ, if sin θ = $\dfrac{5}{13}$ and $\dfrac{π}{2}$ < θ < $π$

Solution


We know that $sin^2 θ$ + $cos^2 θ$ = 1

$\begin{align*} ∴ cos θ & = - \sqrt{1 - sin^2 θ} \\ & = - \sqrt{1 - \dfrac{25}{169}} \\ & = - \dfrac{12}{13} \end{align*} $


tan θ = $\dfrac{sin θ}{cos θ}$ = $\dfrac{\dfrac{5}{13}}{\dfrac{-12}{13}}$ = $\dfrac{-5}{12}$

cot θ = $\dfrac{1}{tan θ} = -\dfrac{1}{\dfrac{5}{12}} = -\dfrac{12}{5}$





2
Calculate sin 65° sin 25°

Solution

We know that $sin^2 θ$ + $cos^2 θ$ = 1

$\begin{align*} ∴ cos θ & = - \sqrt{1 - sin^2 θ} \\ & = - \sqrt{1 - \dfrac{25}{169}} \\ & = - \dfrac{12}{13} \end{align*} $



tan θ = $\dfrac{sin θ}{cos θ}$ = $- \dfrac{\dfrac{5}{13}}{\dfrac{12}{13}} $ = $- \dfrac{5}{12}$

$cot θ$ = $\dfrac{1}{tan θ}$ = $-\dfrac{1}{\dfrac{5}{12}} = -\dfrac{12}{5}$