PART-A
Q.1 The identity element for the binary operation $*$ if $a*b = \dfrac{ab}{4}, \forall a, b \in Q$
Karnataka PU MQP 2023
Q.2 If $cot^{-1}x = y$, then
Karnataka PU MQP 2023
Q.3 For $2 \times 2$ matrix $A = [a_{ij}]$ whose elements are given by $a_{ij} = \dfrac{i}{j}$, then A is equal to
Karnataka PU MQP 2023
Q.4 If $\left| \begin{matrix}
3 & \phantom{-}x \\
x & 1 \\
\end{matrix} \right|$
$=$
$\left| \begin{matrix}
3 & \phantom{-}2 \\
4 & 1 \\
\end{matrix} \right|$ then the value of $x$ is equa to
Karnataka PU MQP 2023, MQP2014
Q.5 Left hand derivative of $f(x) = |x|$ at $x=0$ is
Karnataka PU MQP 2023
Q.6 $\int e^x \left( \dfrac{1}{x} - \dfrac{1}{x^2} \right)$ $dx$
Karnataka PU MQP 2023
Q.7 The projection of vector $\overrightarrow{AB}$ on the directed line $l$, if angle $\theta = \pi$ will be
Karnataka PU MQP 2023
Q.8 The equation of $xy$ plane is
Karnataka PU MQP 2023
Q.9 The corner points of the feasible region determined by the following system of linear inequalities: $2x+y \le 10$, $x+3y \le 15$, $x,y \ge 0$ are (0,0), (5,0), (3,4) and (0,5). Let $Z$ = $ax + by$, where $a, b> 0$ Condition on $a$ and $b$ so that the maximum of $Z$ occurs at both (3,4) and (0,5) is
Karnataka PU MQP 2023
Q.10 If $P(A) = \dfrac{1}{2}$, $P(B) = 0$, then $P(A|B)$ is
Karnataka PU MQP 2023
Q.11
For a square matrix $A$ in matrix equation $AX = B$, if $|A| = 0$ and $(adj A) B \ne 0$, then there exists
solution
Karnataka PU MQP 2023
Q.12
The order of the differential equation $2x^2 \left( \dfrac{d^2y}{dx^2} \right) - 3 \left( \dfrac{dy}{dx} \right) + y$ is
Karnataka PU MQP 2023
Q.13 Sum of the intercepts cut off by the plane $2x+y-z=5$ is !*n1*!
Karnataka PU MQP 2023
Q.14 The slope of the normal to the curve $y=2x^2-3sinx$ at $x=0$ is
Karnataka PU MQP 2023
Q.15 The probability of obtaining an even prime number on each die, when a pair of dice is rolled is
Karnataka PU MQP 2023
Q.16
Define a bijective function.
Karnataka PU MQP 2023
Q.17 Find the derivative of the function $sec(tan \sqrt{x})$ with respect to $x$
Karnataka PU MQP 2023
Q.18
Define feasible solutions in a linear programming problem.
Karnataka PU MQP 2023
Q.19 $\int \dfrac{1-sinx}{cos^2x}$ $dx$
Karnataka PU MQP 2023
Q.20
Define Negative of a Vector
Karnataka PU MQP 2023
PART-B
Q.21 Find $gof$ and $fog$, if $f: R \to R$ and $g: R \to R$ are given by $g(x) = x^{\dfrac{1}{3}}$ and $f(x) = 8x^3$
Karnataka PU MQP 2023
Q.22
Prove that $tan^{-1}x + cot^{-1}x$ = $\dfrac{\pi}{2}$
Karnataka PU MQP 2023
Q.23 If $sin \left( sin^{-1} \dfrac{1}{5} + cos^{-1} x \right) = 1$, find $x$
Karnataka PU MQP 2023
Q.24 Find the area of the triangle whose vertices are (2,7), (1,1) and (10,8) using determinants.
Karnataka PU MQP 2023
Q.25 Find $\dfrac{dy}{dx}$, if $2x + 3y = sin x$
Karnataka PU MQP 2023
Q.26 If $y = x^{sin x}$, $x > 0$, find $\dfrac{dy}{dx}$
Karnataka PU MQP 2023
Q.27 Find the local maximum value of the function $g(x) = x^3 - 3x$
Karnataka PU MQP 2023
Q.28 Evaluate $\int sin3x$ $cos4x$ $dx$
Karnataka PU MQP 2023
Q.29 Evaluate $\int_{0}^{\frac{\pi}{2}}$ $cos2x$ $dx$
Karnataka PU MQP 2023
Q.30 Form the differential equation representing the family of curves $y=mx$, where $m$ is arbitrary constant.
Karnataka PU MQP 2023
Q.31 Find the area of a triangle having the points A(1,1,1), B(1,2,3) and C(2,3,1) as its vertices.
Karnataka PU MQP 2023
Q.32 Find a vector in the direction of the $\overrightarrow{a}$ = $\hat{i} - 2 \hat{j}$ that has magnitude 7 units.
Karnataka PU MQP 2023
Q.33 Find the angle between the line $\dfrac{x+1}{2}$=$\dfrac{y}{3}$=$\dfrac{z-3}{6}$ and the plane $10x+2y-11z=3$
Karnataka PU MQP 2023
Q.34 Find the probability distribution of number of heads in two tosses of a coin.
Karnataka PU MQP 2023
PART-C
Q.35
Show that the relation R in R defined as R = {(a,b) : a$\le$b}, is reflexive and transitive but not symmetric.
Karnataka PU MQP 2023
Q.36 Solve: $tan^{-1} \left( \dfrac{x-1}{x-2}\right)$ + $tan^{-1} \left( \dfrac{x+1}{x+2}\right)$ = $\dfrac{\pi}{4}$
Karnataka PU MQP 2023
Q.37
Express $\left[ \begin{matrix}
3 & \phantom{-}5 \\
1 & -1 \\
\end{matrix} \right]$ as the sum of a symmetric and skew symmetric matrices.
Karnataka PU MQP 2023
Q.38 If $y = cos^{-1} \left( \dfrac{1-x^2}{1+x^2} \right)$, 0 < $x$ < 1, then find $\dfrac{dy}{dx}$
Karnataka PU MQP 2023
Q.39
Verify Rolle's theorem for the function $f(x) = x^2 + 2x - 8$, $x \in [-4, 2]$.
Karnataka PU MQP 2023
Q.40 Find the intervals in which the function $f$ given by $f(x)=4x^3−6x^2-72x+30$ is (i) strictly increasing (ii) strictly decreasing.
Karnataka PU MQP 2023
Q.41 Find $\int x cosx$ $dx$
Karnataka PU MQP 2023
Q.42 Find $\int \dfrac{x}{(x+1)(x+2)}$ $dx$
Karnataka PU MQP 2023
Q.43 Find the area of the region bounded by the curve $y^2 = x$ and the lines $x=1$, $x=4$ and the x-axis in the first quadrant.
Karnataka PU MQP 2023
Q.44 Find the equation of the curve passing through the point (-2, 3), given that the slope of the tangent to the curve at any point $(x, y)$ is $\dfrac{2x}{y^2}$
Karnataka PU MQP 2023
Q.45
For any three vectors $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$, prove that [$\overrightarrow{a}$ + $\overrightarrow{b}$ $\overrightarrow{b}$ + $\overrightarrow{c}$ $\overrightarrow{c}$ + $\overrightarrow{a}$] = 2[$\overrightarrow{a}$ $\overrightarrow{b}$ $\overrightarrow{c}$]
Karnataka PU MQP 2023
Q.46 If $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$ are three unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ find the value of $\overrightarrow{a} . \overrightarrow{b}$ + $\overrightarrow{b} . \overrightarrow{c}$ + $\overrightarrow{c} . \overrightarrow{a}$
Karnataka PU MQP 2023
Q.47 Find the vector equation of the plane passing through the intersection of the planes $3x-y+2z-4=0$ and $x+y+z-3=0$ and the point $(2,2,1)$.
Karnataka PU MQP 2023
Q.48 A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.
Karnataka PU MQP 2023
PART-D
Q.49 Let $f: N \rightarrow R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \rightarrow S$, where $S$ is the range of function $f$, is invertible. Find the inverse of $f$.
Karnataka PU MQP 2023
Q.50
If $A$ = $\left[ \begin{matrix}
0 & \phantom{-}6 & \phantom{-}7 \\
-6 & \phantom{-}0 & \phantom{-}8 \\
7 & \phantom{-}-8 & \phantom{-}0 \\
\end{matrix} \right]$,
$B$ = $\left[ \begin{matrix}
0 & \phantom{-}1 & \phantom{-}1 \\
1 & \phantom{-}0 & \phantom{-}2 \\
1 & \phantom{-}2 & \phantom{-}0 \\
\end{matrix} \right]$ and
$C$ = $\left[ \begin{matrix}
2 \\
-2 \\
3 \\
\end{matrix} \right]$, calculate $AB$, $AC$ and $A(B+C)$. Verify that $(A+B)C$ = $AC$+$BC$
Karnataka PU MQP 2023
Q.51
Solve the following system of equations by matrix method:
$x-y+z = 4$; $x+y+z=2$ and $2x+y-3z=0$
Karnataka PU MQP 2023